SARS-CoV-2 Spike RBD Antibody

Catalog # Availability Size / Price Qty
MAB105401-100
MAB105401-SP
Detection of SARS-CoV-2 Spike RBD by Western Blot.
2 Images
Product Details
Citations (3)
FAQs
Supplemental Products
Reviews

SARS-CoV-2 Spike RBD Antibody Summary

Species Reactivity
SARS-CoV-2
Specificity
Detects SARS-CoV-2 Spike Protein S1 Receptor Binding Domain (RBD) in direct ELISAs and Western blots. Detects SARS-CoV-2 B.1.1.529 S RBD (Omicron Variant) in direct ELISAs
Source
Monoclonal Mouse IgG2B Clone # 1034515
Purification
Protein A or G purified from hybridoma culture supernatant
Immunogen
Recombinant SARS-CoV-2 Spike Protein, S1 Subunit, Receptor Binding Domain (RBD)
Arg319-Phe541
Accession # YP_009724390
Formulation
Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. *Small pack size (SP) is supplied either lyophilized or as a 0.2 µm filtered solution in PBS.
Label
Unconjugated

Applications

Recommended Concentration
Sample
Western Blot
2 µg/mL
Recombinant SARS-CoV-2 Spike RBD protein
Simple Western
20 µg/mL
Recombinant SARS-CoV-2 Spike S1 RBD (receptor binding domain) protein, Recombinant SARS-CoV-2 Spike S1 subunit protein, and Recombinant SARS-CoV-2 Spike S1 /S2 subunit protein

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

Scientific Data

Western Blot Detection of SARS-CoV-2 Spike RBD antibody by Western Blot. View Larger

Detection of SARS-CoV-2 Spike RBD by Western Blot. Western blot shows recombinant SARS-CoV-2 Spike RBD protein. PVDF membrane was probed with 2 µg/mL of Mouse Anti-SARS-CoV-2 Spike RBD Monoclonal Antibody (Catalog # MAB105401) followed by HRP-conjugated Anti-Mouse IgG Secondary Antibody (HAF018). A specific band was detected for SARS-CoV-2 Spike RBD at approximately 35 kDa (as indicated). This experiment was conducted under reducing conditions and using Western Blot Buffer Group 1.

Simple Western Detection of SARS-CoV-2 Spike RBD antibody by Simple Western<sup>TM</sup> View Larger

Detection of SARS-CoV-2 Spike RBD by Simple WesternTM Simple Western lane view shows recombinant SARS-CoV-2 Spike S1 RBD (receptor binding domain) protein, recombinant SARS-CoV-2 Spike S1 subunit protein, recombinant SARS-CoV-2 Spike S2 subunit protein (negative sample), recombinant SARS-CoV-2 Spike S1/S2 subunit protein, and recombinant SARS-CoV-2 Nucleocapsid protein (negative sample), loaded at 0.2 mg/mL. Specific bands were detected for SARS-CoV-2 Spike S1 RBD at approximately 50kDa, SARS-CoV-2 Spike S1 subunit at approximately 129kDa, and SARS-CoV-2 Spike S1/S2 subunit at approximately 230kDa (as indicated) using 20 µg/mL of Mouse Anti-SARS-CoV-2 Spike RBD Monoclonal Antibody (Catalog # MAB105401). This experiment was conducted under reducing conditions and using the 12-230 kDa separation system.

Preparation and Storage

Reconstitution
Reconstitute at 0.5 mg/mL in sterile PBS.
Loading...
Shipping
Lyophilized product is shipped at ambient temperature. Liquid small pack size (-SP) is shipped with polar packs. Upon receipt, store immediately at the temperature recommended below.
Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 6 months, -20 to -70 °C under sterile conditions after reconstitution.

Background: Spike RBD

SARS-CoV-2, which causes the global pandemic coronavirus disease 2019 (Covid-19), belongs to a family of viruses known as coronaviruses that are commonly comprised of four structural proteins: Spike protein(S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N) (1). SARS-CoV-2 Spike Protein (S Protein) is a glycoprotein that mediates membrane fusion and viral entry. The S protein is homotrimeric, with each ~180-kDa monomer consisting of two subunits, S1 and S2 (2). In SARS-CoV-2, as with most coronaviruses, proteolytic cleavage of the S protein into two distinct peptides, S1 and S2 subunits, is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor while the S2 subunit is involved with cell fusion (3-5). Based on structural biology studies, the receptor binding domain (RBD), located in the C-terminal region of S1, can be oriented either in the up/standing or down/lying state (6). The standing state is associated with higher pathogenicity and both SARS-CoV-1 and MERS can access this state due to the flexibility in their respective RBDs. A similar two-state structure and flexibility is found in the SARS-CoV-2 RBD (7). Based on amino acid (aa) sequence homology, the SARS-CoV-2 S1 subunit RBD has 73% identity with the RBD of the SARS-CoV-1 S1 RBD, but only 22% homology with the MERS S1 RBD. The low aa sequence homology is consistent with the finding that SARS and MERS bind different cellular receptors (8). The S Protein of the SARS-CoV-2 virus, like the SARS-CoV-1 counterpart, binds Angiotensin-Converting Enzyme 2 (ACE2), but with much higher affinity and faster binding kinetics (9). Before binding to the ACE2 receptor, structural analysis of the S1 trimer shows that only one of the three RBD domains in the trimeric structure is in the "up" conformation. This is an unstable and transient state that passes between trimeric subunits but is nevertheless an exposed state to be targeted for neutralizing antibody therapy (10). Polyclonal antibodies to the RBD of the SARS-CoV-2 protein have been shown to inhibit interaction with the ACE2 receptor, confirming RBD as an attractive target for vaccinations or antiviral therapy (11). There is also promising work showing that the RBD may be used to detect presence of neutralizing antibodies present in a patient's bloodstream, consistent with developed immunity after exposure to the SARS-CoV-2 virus (12). Lastly, it has been demonstrated the S Protein can invade host cells through the CD147/EMMPRIN receptor and mediate membrane fusion (13, 14).

References
  1. Wu, F. et al. (2020) Nature 579:265.
  2. Tortorici, M.A. and D. Veesler (2019). Adv. Virus Res. 105:93.
  3. Bosch, B.J. et al. (2003) J. Virol. 77:8801.
  4. Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. 106:5871.
  5. Millet, J.K. and G. R. Whittaker (2015) Virus Res. 202:120.
  6. Yuan, Y. et al. (2017) Nat. Commun. 8:15092.
  7. Walls, A.C. et al. (2010) Cell 180:281.
  8. Jiang, S. et al. (2020) Trends. Immunol. https://doi.org/10.1016/j.it.2020.03.007.
  9. Ortega, J.T. et al. (2020) EXCLI J. 19:410.
  10. Wrapp, D. et al. (2020) Science 367:1260.
  11. Tai, W. et al. (2020) Cell. Mol. Immunol. https://doi.org/10.1016/j.it.2020.03.007.
  12. Okba, N. M. A. et al. (2020). Emerg. Infect. Dis. https://doi.org/10.3201/eid2607.200841.
  13. Wang, X. et al. (2020) https://doi.org/10.1038/s41423-020-0424-9.
  14. Wang, K. et al. (2020) bioRxiv https://www.biorxiv.org/content/10.1101/2020.03.14.988345v1.
Long Name
Spike Receptor Binding Domain
Entrez Gene IDs
3200426 (HCoV-HKU1); 14254594 (MERS-CoV); 1489668 (SARS-CoV); 43740568 (SARS-CoV-2)
Alternate Names
Spike RBD

Product Datasheets

You must select a language.

x

Citations for SARS-CoV-2 Spike RBD Antibody

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

3 Citations: Showing 1 - 3
Filter your results:

Filter by:

  1. Nanograms of SARS-CoV-2 spike protein delivered by exosomes induce potent neutralization of both delta and omicron variants
    Authors: Cacciottolo, M;Li, Y;Nice, JB;LeClaire, MJ;Twaddle, R;Mora, CL;Adachi, SY;Young, M;Angeles, J;Elliott, K;Sun, M;
    PloS one
    Species: Human
    Sample Types: Cell Lysates, Exosomes
    Applications: Western Blot
  2. In Silico Protein Folding Prediction of COVID-19 Mutations and Variants
    Authors: S Bhowmick, T Jing, W Wang, EY Zhang, F Zhang, Y Yang
    Biomolecules, 2022-11-10;12(11):.
    Species: African Green Monkey
    Sample Types: Cell Lysates, Whole Cells
    Applications: ICC, Western Blot
  3. Incorporation of noncanonical base Z yields modified mRNA with minimal immunogenicity and increased translational capacity in mammalian cells
    Authors: Meng Zhang, Nilmani Singh, Mary Elisabeth Ehmann, Lining Zheng, Huimin Zhao
    iScience

FAQs

No product specific FAQs exist for this product, however you may

View all Antibody FAQs
Loading...

Reviews for SARS-CoV-2 Spike RBD Antibody

There are currently no reviews for this product. Be the first to review SARS-CoV-2 Spike RBD Antibody and earn rewards!

Have you used SARS-CoV-2 Spike RBD Antibody?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review