Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF
Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF Summary
Product Specifications
Val16-Lys1211 (Thr19Arg, Gly142Asp, Glu156Gly, Phe157 del, Arg158 del, Leu452Arg, Thr478Lys, Asp614Gly, Pro681Arg, Asp950Asn) (Arg682Ser, Arg685Ser, Lys986Pro, Val987Pro), with a C-terminal 6-His tag
Analysis
Product Datasheets
10942-CV
Carrier Free
CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.
In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.
10942-CV
Formulation | Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. |
Reconstitution | Reconstitute at 500 μg/mL in PBS. |
Shipping | The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage: | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
|
Scientific Data
Recombinant SARS-CoV-2 B.1.617.2 Spike L452R T478K His-tag (Catalog # 10942-CV) binds Recombinant Human ACE-2 His-tag (933-ZN) in a functional ELISA.
2 μg/lane of Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein (Catalog # 10942-CV) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized byCoomassie® Blue staining, showing bands at 150-165 kDa.
Background: Spike
SARS-CoV-2, which causes the global pandemic coronavirus disease 2019 (Covid-19), belongs to a family of viruses known as coronaviruses that also include MERS-CoV and SARS-CoV-1. Coronaviruses are commonly comprised of four structural proteins: Spike protein (S), Envelope protein (E), Membrane protein (M) and Nucleocapsid protein (N) (1). The SARS-CoV-2 S protein is a glycoprotein that mediates membrane fusion and viral entry. The S protein is homotrimeric, with each ~180-kDa monomer consisting of two subunits, S1 and S2 (2). In SARS-CoV-2, as with most coronaviruses, proteolytic cleavage of the S protein into S1 and S2 subunits is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor while the S2 subunit is involved with cell fusion (3-5). The S protein of SARS‑CoV‑2 shares 75% and 29% amino acid sequence identity with S protein of SARS-CoV-1 and MERS, respectively. The S Protein of the SARS-CoV-2 virus, like the SARS-CoV-1 counterpart, binds a metallopeptidase, Angiotensin-Converting Enzyme 2 (ACE-2), but with much higher affinity and faster binding kinetics through the receptor binding domain (RBD) located in the C-terminal region of S1 subunit (6). It has been demonstrated that the S Protein can invade host cells through the CD147/EMMPRIN receptor and mediate membrane fusion (7, 8). Polyclonal antibodies to the RBD of the SARS-CoV-2 protein have been shown to inhibit interaction with the ACE-2 receptor, confirming RBD as an attractive target for vaccinations or antiviral therapy (9). There is also promising work showing that the RBD may be used to detect presence of neutralizing antibodies present in a patient's bloodstream, consistent with developed immunity after exposure to the SARS-CoV-2 (10). Several emerging SARS-CoV-2 genomes have been identified with mutations in the RBD compared to the Wuhan-Hu-1 SARS-CoV-2 reference sequence. First detected in India in December 2020, the B.1.617.2, or Delta variant, is considered a Variant of Concern (VOC) as it contains several mutations that potentially affect viral fitness and transmissibility. The L452R mutation is located in the RBD and is known to increase affinity for ACE-2 receptors and is associated with resistance to neutralization by multiple monoclonal antibodies (11, 12). Also located in the RBD, the T478K mutation shows significant increase in ACE-2 binding affinity and may make the variant more transmissible and infectious (13). The D614G mutation is located nearby to the RBD domain and has been shown to increase viral infectivity (14). The P618H mutation is found adjacent to the furin cleavage site and is proposed to enhance S protein cleavage and increase viral infectivity (15). Additionally, vaccines developed against SARS-CoV-2 show a decrease in efficacy towards the Delta variant (16).
- Wu, F. et al. (2020) Nature 579:265.
- Tortorici, M.A. and D. Veesler (2019) Adv. Virus Res. 105:93.
- Bosch, B.J. et al. (2003). J. Virol. 77:8801.
- Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. 106:5871.
- Millet, J.K. and G.R. Whittaker (2015) Virus Res. 202:120.
- Ortega, J.T. et al. (2020) EXCLI J. 19:410.
- Wang, K. et al. (2020) bioRxiv https://www.biorxiv.org/content/10.1101/2020.03.14.988345v1.
- Isabel, et al. (2020) Sci. Rep. 10, 14031. https://doi.org/10.1038/s41598-020-70827-z.
- Tai, W. et al. (2020) Cell. Mol. Immunol. https://doi.org/10.1016/j.it.2020.03.007.1.
- Okba, N.M.A. et al. (2020). Emerg. Infect. Dis. https://doi.org/10.3201/eid2607.200841.
- Liu, Z. et al. (2021) Cell Host Microbe. 29:477.
- Motozono, C. et al. (2021) bioRxiv, https://www.biorxiv.org/content/10.1101/2021.04.02.438288v1.
- Wang, R. et al. (2021) Genomics 113:2158.
- Zhang, L. et al. (2020) Nat Commun. 11:6013.
- Lasek-Nesselquist, E. et al. (2021) medRxiv https://doi.org/10.1101/2021.03.10.21253285.
- Pouwels, K.B. et al. (2021) Preprint at Univ. Oxford https://www.ndm.ox.ac.uk/files/coronavirus/covid-19-infection-survey/finalfinalcombinedve20210816.pdf.
Citation for Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF
R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.
1 Citation: Showing 1 - 1
-
Long-Term CD4+ T-Cell and Immunoglobulin G Immune Responses in Oncology Workers following COVID-19 Vaccination: An Interim Analysis of a Prospective Cohort Study
Authors: C Gallen, CW Dukes, A Aldrich, L Macaisa, Q Mo, CL Cubitt, S Pilon-Thom, AR Giuliano, BJ Czerniecki, RLB Costa
Vaccines, 2022-11-15;10(11):.
Species: Human
Sample Types: Whole Cells
Applications: Cell Culture
FAQs
No product specific FAQs exist for this product, however you may
View all Proteins and Enzyme FAQsReviews for Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF
There are currently no reviews for this product. Be the first to review Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF and earn rewards!
Have you used Recombinant SARS-CoV-2 B.1.617.2 Spike His-tag Protein, CF?
Submit a review and receive an Amazon gift card.
$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image
$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image