Human HGFR/c-MET Fluorescein-conjugated Antibody

Catalog # Availability Size / Price Qty
FAB3582F
Detection of HGF R/c‑MET in MDA‑MB‑231 Human Cell Line by Flow Cytometry.
1 Image
Product Details
Citations (5)
FAQs
Supplemental Products
Reviews

Human HGFR/c-MET Fluorescein-conjugated Antibody Summary

Species Reactivity
Human
Specificity
Detects human HGF R/c-MET.
Source
Monoclonal Mouse IgG1 Clone # 95106
Purification
Protein A or G purified from hybridoma culture supernatant
Immunogen
Mouse myeloma cell line NS0-derived recombinant human HGF R/c-MET
Glu25-Thr932
Accession # P08581
Formulation
Supplied in a saline solution containing BSA and Sodium Azide.
Label
Fluorescein (Excitation= 488 nm, Emission= 515-545 nm)

Applications

Recommended Concentration
Sample
Flow Cytometry
10 µL/106 cells
See below

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

Scientific Data

Flow Cytometry Detection of HGF R/c-MET antibody in MDA-MB-231 Human Cell Line antibody by Flow Cytometry. View Larger

Detection of HGF R/c‑MET in MDA‑MB‑231 Human Cell Line by Flow Cytometry. MDA-MB-231 human breast cancer cell line was stained with Mouse Anti-Human HGF R/c-MET Fluorescein-conjugated Monoclonal Antibody (Catalog # FAB3582F, filled histogram) or isotype control antibody (Catalog # IC002F, open histogram). View our protocol for Staining Membrane-associated Proteins.

Preparation and Storage

Shipping
The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage
Protect from light. Do not freeze.
  • 12 months from date of receipt, 2 to 8 °C as supplied.

Background: HGFR/c-MET

HGF R, also known as Met (from N-methyl-N’-nitro-N-nitrosoguanidine induced), is a glycosylated receptor tyrosine kinase that plays a central role in epithelial morphogenesis and cancer development. HGF R is synthesized as a single chain precursor which undergoes cotranslational proteolytic cleavage. This generates a mature HGF R that is a disulfide-linked dimer composed of a 50 kDa extracellular alpha chain and a 145 kDa transmembrane beta chain (1, 2). The extracellular domain (ECD) contains a seven bladed beta -propeller sema domain, a cysteine-rich PSI/MRS, and four Ig-like E-set domains, while the cytoplasmic region includes the tyrosine kinase domain (3, 4). Proteolysis and alternate splicing generate additional forms of human HGF R which either lack of the kinase domain, consist of secreted extracellular domains, or are deficient in proteolytic separation of the alpha and beta chains (5-7). The sema domain, which is formed by both the alpha and beta chains of HGF R, mediates both ligand binding and receptor dimerization (3, 8). Ligand-induced tyrosine phosphorylation in the cytoplasmic region activates the kinase domain and provides docking sites for multiple SH2-containing molecules (9, 10). HGF stimulation induces HGF R downregulation via internalization and proteasome-dependent degradation (11). In the absence of ligand, HGF R forms non-covalent complexes with a variety of membrane proteins including CD44v6, CD151, EGF R, Fas, Integrin alpha 6/ beta 4, Plexins B1, 2, 3, and MSP R/Ron (12-19). Ligation of one complex component triggers activation of the other, followed by cooperative signaling effects (12-19). Formation of some of these heteromeric complexes is a requirement for epithelial cell morphogenesis and tumor cell invasion (12, 16, 17). Paracrine induction of epithelial cell scattering and branching tubulogenesis results from the stimulation of HGF R on undifferentiated epithelium by HGF released from neighboring mesenchymal cells (20). Genetic polymorphisms, chromosomal translocation, over-expression, and additional splicing and proteolytic cleavage of HGF R have been described in a wide range of cancers (1). Within the ECD, human HGF R shares 86-88% amino acid sequence identity with canine, mouse, and rat HGF R.

References
  1. Birchmeier, C. et al. (2003) Nat. Rev. Mol. Cell Biol. 4:915.
  2. Corso, S. et al. (2005) Trends Mol. Med. 11:284.
  3. Gherardi, E. et al. (2003) Proc. Natl. Acad. Sci. USA 100:12039.
  4. Park, M. et al. (1987) Proc. Natl. Acad. Sci. USA 84:6379.
  5. Crepaldi, T. et al. (1994) J. Biol. Chem. 269:1750.
  6. Prat, M. et al. (1991) Mol. Cell. Biol. 12:5954.
  7. Rodrigues, G.A. et al. (1991) Mol. Cell. Biol. 11:2962.
  8. Kong-Beltran, M. et al. (2004) Cancer Cell 6:75.
  9. Naldini, L. et al. (1991) Mol. Cell. Biol. 11:1793.
  10. Ponzetto, C. et al. (1994) Cell 77:261.
  11. Jeffers, M. et al. (1997) Mol. Cell. Biol. 17:799.
  12. Orian-Rousseau, V. et al. (2002) Genes Dev. 16:3074.
  13. Klosek, S.K. et al. (2005) Biochem. Biophys. Res. Commun. 336:408.
  14. Jo, M. et al. (2000) J. Biol. Chem. 275:8806.
  15. Wang, X. et al. (2002) Mol. Cell 9:411.
  16. Trusolino, L. et al. (2001) Cell 107:643.
  17. Giordano, S. et al. (2002) Nat. Cell Biol. 4:720.
  18. Conrotto, P. et al. (2004) Oncogene 23:5131.
  19. Follenzi, A. et al. (2000) Oncogene 19:3041.
  20. Sonnenberg, E. et al. (1993) J. Cell Biol. 123:223.
Long Name
Hepatocyte Growth Factor Receptor
Entrez Gene IDs
4233 (Human); 17295 (Mouse)
Alternate Names
AUTS9; cMET; c-MET; EC 2.7.10; EC 2.7.10.1; hepatocyte growth factor receptor; HGF R; HGF receptor; HGF/SF receptor; HGFR; Met (c-Met); met proto-oncogene (hepatocyte growth factor receptor); met proto-oncogene tyrosine kinase; MET; oncogene MET; Proto-oncogene c-Met; RCCP2; Scatter factor receptor; SF receptor; Tyrosine-protein kinase Met

Product Datasheets

You must select a language.

x

Citations for Human HGFR/c-MET Fluorescein-conjugated Antibody

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

5 Citations: Showing 1 - 5
Filter your results:

Filter by:

  1. Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through Akt and Erk phosphorylation in pediatric low grade astrocytoma and ependymoma.
    Authors: Sie M, den Dunnen W, Lourens H, Meeuwsen-de Boer T, Scherpen F, Zomerman W, Kampen K, Hoving E, de Bont E
    PLoS ONE, 2015-03-23;10(3):e0122555.
    Species: Human
    Sample Types: Whole Cells
    Applications: Flow Cytometry
  2. In Vivo Visualization of MET Tumor Expression and Anticalin Biodistribution with the MET-Specific Anticalin 89Zr-PRS-110 PET Tracer
    Authors: Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Marlon J. Hinner, Remy B. Verheijen, Andrea Allersdorfer, Martin Hülsmeyer et al.
    Journal of Nuclear Medicine
  3. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.
    Authors: Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, Gulotta G, Dieli F, De Maria R, Stassi G
    Cell Stem Cell, 2014-03-06;14(3):342-56.
    Species: Human
    Sample Types: Whole Cells
    Applications: Flow Cytometry
  4. Activated platelets interfere with recruitment of mesenchymal stem cells to apoptotic cardiac cells via high mobility group box 1/Toll-like receptor 4-mediated down-regulation of hepatocyte growth factor receptor MET.
    Authors: Vogel S, Chatterjee M, Metzger K, Borst O, Geisler T, Seizer P, Muller I, Mack A, Schumann S, Buhring H, Lang F, Sorg R, Langer H, Gawaz M
    J Biol Chem, 2014-02-24;289(16):11068-82.
    Species: Human
    Sample Types: Whole Cells
    Applications: Flow Cytometry
  5. In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors
    Authors: Sun Jin Baek, Sung Keun Kang, Jeong Chan Ra
    Experimental and Molecular Medicine

FAQs

No product specific FAQs exist for this product, however you may

View all Antibody FAQs
Loading...

Reviews for Human HGFR/c-MET Fluorescein-conjugated Antibody

There are currently no reviews for this product. Be the first to review Human HGFR/c-MET Fluorescein-conjugated Antibody and earn rewards!

Have you used Human HGFR/c-MET Fluorescein-conjugated Antibody?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review